Postgrad Guide – JC Schoeman
Skripsie Guide – JC Schoeman
Bayesian Reasoning and Machine Learning – David Barber
Deep Learning – Ian Goodfellow, Yoshua Bengio and Aaron Courville
Gaussian Processes for Machine Learning – Carl Rasmussen and Christopher Williams
Probabilistic Robotics – Sebastian Thrun, Wolfram Burgard and Dieter Fox
Reinforcement Learning: An Introduction – Richard Sutton and Andrew Barto
Control Theory – Steve Brunton
Convex Optimisation – Stephen Boyd
Linear Algebra – Gilbert Strang
Machine Learning – Herman Kamper
Neural Networks – Hugo Larochelle
Probabilistic Graphical Models – Daphne Koller
Reinforcement Learning – David Silver
Robotics – Pieter Abbeel